Spectral broadening mechanism of Yb3+-doped cubic LuxSc2-xO3 sesquioxide crystals for ultrafast lasers

Author:

Guo Ruiqi1,Huang Dapeng1,Lu Dazhi1ORCID,Liang Fei1,Zhang Qingli2,Yu Haohai1ORCID,Zhang Huaijin1

Affiliation:

1. State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University

2. Chinese Academy of Sciences

Abstract

Over the past decades, Yb3+-doped cubic sesquioxide crystals have been considered as ideal gain materials for ultrafast laser generation, owing to their high thermal conductivity and adequate optical characteristics. The broadening of spectra by mixing host crystals to obtain short pulses has been extensively explored; however, few studies have examined the mechanism of the crystal field effect on spectral broadening. This paper describes the spectral broadening process caused by the combination of the discrete transition peaks induced by the crystal field effect and electron-phonon coupling widening based on Yb:LuxSc2-xO3 crystals. The energy level splitting induced by the crystal field effect not only determines the emission peak positions, but also broadens the emission spectra in the mixed host materials through the increasing spin-orbit coupling effect. Moreover, with the involvement of the electron-phonon coupling and the crystal field effect, the spectral broadening is much more obvious at room temperature. These results not only explain the spectral broadening mechanism of Yb3+-doped sesquioxides but also provide important insights for the improvement of new ultrafast laser materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3