Affiliation:
1. Harbin Institute of Technology
2. China Academy of Engineering Physics
Abstract
Point defects with different species are concentrated on most mechanically machined fused silica optical surfaces with surface defects, which would sharply decrease the laser damage resistance under intense laser irradiation. Various point defects have distinct roles in affecting the laser damage resistance. Especially, the proportions of various point defects have not been identified, posing the challenge in relating the intrinsic quantitative relationship among various point defects. To fully reveal the comprehensive effect of various point defects, it is necessary to systematically explore the origins, evolution laws and especially the quantitative relationship among point defects. Herein, seven types of point defects are determined. The unbonded electrons in point defects are found to tend to be ionized to induce laser damage and there is a definite quantitative relationship between the proportions of oxygen-deficient point defects and that of peroxide point defects. The conclusions are further verified based on the photoluminescence (PL) emission spectra and the properties (e.g., reaction rule and structural feature) of the point defects. On basis of the fitted Gaussian components and electronic-transition theory, the quantitative relationship between PL and the proportions of various point defects is constructed for the first time. E’-Center accounts for the highest proportion among them. This work is beneficial for fully revealing the comprehensive action mechanisms of various point defects and providing new insights in elucidating the defect-induced laser damage mechanisms of optical components under intense laser irradiation from the atomic scale.
Funder
National Natural Science Foundation of China
Consolidation Program for Fundamental Research
Young Elite Scientists Sponsorship Program by CAST
China Postdoctoral Science Foundation
Natural Science Foundation of Heilongjiang Province
Self-Planned Task of State Key Laboratory of Robotics and System
Subject
Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献