QoS-aware secure transmission design for VLC with semi-grant-free NOMA scheme

Author:

Li Ganggang,Wang Ping,Zhou Binna,He Huimeng,Hao Weihan,Yang Ting

Abstract

This work aims to enhance the physical layer security (PLS) of non-orthogonal multiple access (NOMA) aided indoor visible light communication (VLC) system with semi-grant-free (SGF) transmission scheme, in which a grant-free (GF) user shares the same resource block with a grant-based (GB) user whose quality of service (QoS) must be strictly guaranteed. Besides, the GF user is also provided with an acceptable QoS experience, which is closely aligned with the practical application. Both active and passive eavesdropping attacks are discussed in this work, where users’ random distributions are taken into account. Specifically, to maximize the secrecy rate of the GB user in the presence of an active eavesdropper, the optimal power allocation policy is obtained in exact closed-form and the user fairness is then assessed by Jain’s fairness index. Moreover, the secrecy outage performance of the GB user is analyzed in the presence of the passive eavesdropping attack. Both exact and asymptotic theoretical expressions for the secrecy outage probability (SOP) of the GB user are derived, respectively. Furthermore, the effective secrecy throughput (EST) is investigated on the basis of the derived SOP expression. Through simulations, it is found that the PLS of this VLC system can be significantly improved by the proposed optimal power allocation scheme. The radius of the protected zone, the outage target rate for the GF user, and the secrecy target rate for the GB user would have pronounced impacts on the PLS and user fairness performance of this SGF-NOMA assisted indoor VLC system. The maximum EST will increase with the increasing transmit power and it is hardly influenced by the target rate for the GF user. This work will benefit the design of indoor VLC system.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

Fundamental Research Funds for the Central Universities

Xidian University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3