Hyperspectral image super-resolution via a multi-stage scheme without employing spatial degradation

Author:

Cao XuhengORCID,Lian Yusheng,Liu Zilong1,Zhou Han,Wang Bin,Zhang Wan,Huang Beiqing

Affiliation:

1. National Institute of Metrology

Abstract

Recently, it has become popular to obtain a high spatial resolution hyperspectral image (HR-HSI) by fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution RGB image (HR-RGB). Existing HSI super-resolution methods are designed based on a known spatial degeneration. In practice, it is difficult to obtain correct spatial degradation, which restricts the performance of existing methods. Therefore, we propose a multi-stage scheme without employing the spatial degradation model. The multi-stage scheme consists of three stages: initialization, modification, and refinement. According to the angle similarity between the HR-RGB pixel and LR-HSI spectra, we first initialize a spectrum for each HR-RGB pixel. Then, we propose a polynomial function to modify the initialized spectrum so that the RGB color values of the modified spectrum are the same as the HR-RGB. Finally, the modified HR-HSI is refined by a proposed optimization model, in which a novel, to the best of our knowledge, spectral-spatial total variation (SSTV) regularizer is investigated to keep the spectral and spatial structure of the reconstructed HR-HSI. The experimental results on two public datasets and our real-world images demonstrate our method outperforms eight state-of-the-art existing methods in terms of both reconstruction accuracy and computational efficiency.

Funder

National Natural Science Foundation of China

Beijing Institute of Graphic Communication

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3