Laminated structural Al2O3/YAG:Ce composite ceramic phosphor with high front light emission for transmissive laser lighting

Author:

Wang Jinhua,Zhang Le12ORCID,Kang Jian13ORCID,Li MingZhou14,Shi ChaoFan14,Yang Peng5,Sun Bingheng6,Li Yang7,Strek Wieslaw8,Chen Hao1

Affiliation:

1. Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology

2. Shandong University

3. Xuzhou EAGLED Technology Co.,

4. Xuzhou Kangna Advanced Materials Technology Co.,

5. Xuzhou Fuchang Electronic Technology Co.,

6. Shanghai Institute of Optics Fine Mechanics

7. Shanghai Institute of Technology

8. Institute of Low Temperature and Structure Research

Abstract

The realization of high front light emission in laser lighting under transmissive modes is heavily constrained by low thermal stability and light extraction efficiency of color converter materials. Therefore, it is necessary to improve the heat dissipation capacity and light utilization efficiency of the color converter through appropriate microstructural adjustments. In this study, what we believe to be a novel laminated structure consisting of Al2O3 and YAG:Ce was designed and fabricated for transmissive laser lighting. Through this design, it was possible to change the phosphor emission angle, overcoming the limitations of total internal reflection and enabling maximal emission of yellow phosphor from the ceramic surface. This laminated structure enhanced the front light emission efficiency by 24.4% compared to composite ceramic phosphor. In addition, the thermal conduction area between the phosphor layer and the heat dissipation layer have been effectively enhanced. Ultimately, under a high-power density of 47.6 W/mm2, all ceramics showed no luminous saturation threshold. A high-brightness front light with a luminous flux of 651 lm, a luminous efficiency of 144 lm/W, a correlated color temperature of 6419 K and the operating temperature as low as 84.9 °C was obtained. These results suggest that laminated structural Al2O3/YAG:Ce composite ceramic is a promising candidate for transmissive mode laser lighting.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Key Research and Development Project of Jiangsu Province

Natural Science Foundation of Jiangsu Province

International S&T Cooperation Program of Jiangsu Province

Special Project for Technology Innovation of Xuzhou City

Open Project of State Key Laboratory of Crystal Materials

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3