Affiliation:
1. City University of Hong Kong Dongguan Research Institute
2. City University of Hong Kong Shenzhen Research Institute
Abstract
Waveguide crossings are elementary passive components for signal routing in photonic integrated circuits. Here, we design and characterize two multimode interferometer (MMI)-based waveguide crossings to serve the various routing directions in the anisotropic x-cut thin-film lithium niobate (TFLN) platform. To address the large measurement uncertainties in traditional cut-back characterization methods, we propose and demonstrate a resonator-assisted approach that dramatically reduces the uncertainty of insertion loss measurement (< 0.021 dB) and the lower bound of crosstalk measurement (−60 dB) using only two devices. Based on this approach, we demonstrate and verify TFLN waveguide crossings with insertion losses of < 0.070 dB and crosstalk of < −50 dB along all three routing directions at 1550 nm. The low-loss and low-crosstalk waveguide crossings in this work, together with the simple and efficient characterization strategy, could provide important layout design flexibility for future large-scale classical and quantum TFLN photonic circuits.
Funder
Research Grants Council, University Grants Committee
Croucher Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献