Affiliation:
1. Relative Dynamics Inc.
Abstract
Stabilization, disturbance rejection, and control of optical beams and optical spots are ubiquitous problems that are crucial for the development of optical systems for ground and space telescopes, free-space optical communication terminals, precise beam steering systems, and other types of optical systems. High-performance disturbance rejection and control of optical spots require the development of disturbance estimation and data-driven Kalman filter methods. Motivated by this, we propose a unified and experimentally verified data-driven framework for optical-spot disturbance modeling and tuning of covariance matrices of Kalman filters. Our approach is based on covariance estimation, nonlinear optimization, and subspace identification methods. Also, we use spectral factorization methods to emulate optical-spot disturbances with a desired power spectral density in an optical laboratory environment. We test the effectiveness of the proposed approaches on an experimental setup consisting of a piezo tip-tilt mirror, piezo linear actuator, and a CMOS camera.
Funder
Goddard Space Flight Center
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献