Vibration-insensitive polarimetric fiber optic current sensor based on orbital angular momentum modes in an air-core optical fiber

Author:

Xiang Lina,Pang Fufei,Xiao Zhongyin,Zhang LiangORCID,Wei Heming,Zhu MengshiORCID,Ramachandran Siddharth1,Wang Tingyun

Affiliation:

1. Boston University

Abstract

Current or magnetic field sensing is usually achieved by exploiting the Faraday effect of an optical material combined with an interferometric probe that provides the sensitivity. Being interferometric in nature, such sensors are typically sensitive to several other environmental parameters such as vibrations and mechanical disturbances, which, however, inevitably impose the inaccuracy and instability of the detection. Here we demonstrate a polarimetric fiber optic current sensor based on orbital angular momentum modes of an air-core optical fiber. In the fiber, spin–orbit interactions imply that the circular birefringence, which is sensitive to applied currents or resultant magnetic fields, is naturally resilient to mechanical vibrations. The sensor, which effectively measures polarization rotation at the output of a fiber in a magnetic field, exhibits high linearity in the measured signal versus the applied current that induces the magnetic field, with a sensitivity of 0.00128 rad/A and a noise limit of 1×10−5/Hz. The measured polarization varies within only ±0.1% under mechanical vibrations with the frequency of up to 800 Hz, validating the robust environmental performance of the sensor.

Funder

National Natural Science Foundation of China

Office of Naval Research

Vannevar Bush Faculty Fellowship

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of multimodal vortex optical orbital angular momentum in multimode fiber speckle patterns;Optics Communications;2024-12

2. Vortex Fiber Laser Based on Twisted High Concentration Doped Active Fiber;2024 22nd International Conference on Optical Communications and Networks (ICOCN);2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3