Phase screen prediction using deep phase network for FSO links

Author:

Li Ming1ORCID,Wu Zhigeng1,Wang Tianyi2ORCID,Zhang Pengxin1,Cvijetic Milorad3

Affiliation:

1. Tianjin Normal University

2. Guizhou University

3. University of Arizona

Abstract

Due to the presence of air turbulence in free-space optical (FSO) links, random fluctuations in wavefront phase and amplitude of the optical signal are reduced after it propagates through the air channel, which degrades the performance of free-space optical communication (FSOC) systems. Phase screen reflects the phase distortions resulting from air turbulence. Accordingly, accurate prediction with respect to phase screen is of significance for the FSOC. In this paper, we propose a phase screen prediction method based on the deep phase network (DPN). The advantages of the proposed method include strong robustness against air turbulence, low model depth, and fewer parameters as well as low complexity. The results reveal that our DPN enables desired inference accuracy and faster inference speed compared with the existing models, by combining the mean square deviation loss function with the pixel penalty terms. More concretely, the accuracy of phase screen prediction can reach up to 95%; further, the average time consumed to predict the phase screen is in the order of milliseconds only under various turbulence conditions. Also, our DPN outperforms the traditional Gerchberg–Saxton algorithm in convergence speed.

Funder

Guizhou Provincial Science and Technology Projects

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3