Affiliation:
1. University of South China
2. Beijing Academy of Quantum Information Sciences
3. Chinese Academy of Sciences
4. University of Chinese Academy of Sciences
Abstract
Plasmonic sensing that enables the detection of minute events, when the incident light field interacts with the nanostructure interface, has been widely applied to optical and biological detection. Implementation of the controllable plasmonic double Fano resonances (DFRs) offers a flexible and efficient way for plasmonic sensing. However, plasmonic sensing and digital metasurface induced by tailorable plasmonic DFRs require further study. In this work, we numerically and theoretically investigate the near-infrared plasmonic DFRs for plasmonic sensing and digital metasurface in a hybrid metasurface with concentric ϕ-shaped-hole and circular-ring-aperture unit cells. We show that a plasmonic Fano resonance, resulting from the interaction between a narrow and a wide effective dipolar modes, can be realized in the ϕ-shaped hybrid metasurface. In particular, we demonstrate that the tailoring plasmonic DFRs with distinct mechanisms of actions can be accomplished in three different ϕ-shaped hybrid metasurfaces. Moreover, the resonance mode-broadening and mode-shifting plasmonic sensing can be fulfilled by modulating the polarization orientation and the related geometric parameters of the unit cells in the near-infrared waveband, respectively. In addition, the plasmonic switch with a high ON/OFF ratio can not only be achieved but also be exploited to establish a single-bit digital metasurface, even empower to implement two- and three-bit digital metasurface characterized by the plasmonic DFRs in the telecom L-band. Our results offer a new perspective toward realizing polarization-sensitive optical sensing, passive optical switches, and programmable metasurface devices, which also broaden the landscape of subwavelength nanostructures for biosensors and optical communications.
Funder
Hunan Province Key Laboratory for Ultrafast Micro/Nano Technology and Advanced Laser Manufacture
Foundation of Hunan Educational Committee
Natural Science Foundation of Hunan Province
National Natural Science Foundation of China
National Key Research and Development Program of China
Science Challenge Project
Subject
Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献