Near-infrared plasmonic sensing and digital metasurface via double Fano resonances

Author:

Xu Xiaofeng1,Luo Xiao-Qing12,Zhang Jingzhao1,Zhu Weihua1,Chen Zhiyong1,Li Tie-Fu2,Liu W. M.34,Wang Xin-Lin1

Affiliation:

1. University of South China

2. Beijing Academy of Quantum Information Sciences

3. Chinese Academy of Sciences

4. University of Chinese Academy of Sciences

Abstract

Plasmonic sensing that enables the detection of minute events, when the incident light field interacts with the nanostructure interface, has been widely applied to optical and biological detection. Implementation of the controllable plasmonic double Fano resonances (DFRs) offers a flexible and efficient way for plasmonic sensing. However, plasmonic sensing and digital metasurface induced by tailorable plasmonic DFRs require further study. In this work, we numerically and theoretically investigate the near-infrared plasmonic DFRs for plasmonic sensing and digital metasurface in a hybrid metasurface with concentric ϕ-shaped-hole and circular-ring-aperture unit cells. We show that a plasmonic Fano resonance, resulting from the interaction between a narrow and a wide effective dipolar modes, can be realized in the ϕ-shaped hybrid metasurface. In particular, we demonstrate that the tailoring plasmonic DFRs with distinct mechanisms of actions can be accomplished in three different ϕ-shaped hybrid metasurfaces. Moreover, the resonance mode-broadening and mode-shifting plasmonic sensing can be fulfilled by modulating the polarization orientation and the related geometric parameters of the unit cells in the near-infrared waveband, respectively. In addition, the plasmonic switch with a high ON/OFF ratio can not only be achieved but also be exploited to establish a single-bit digital metasurface, even empower to implement two- and three-bit digital metasurface characterized by the plasmonic DFRs in the telecom L-band. Our results offer a new perspective toward realizing polarization-sensitive optical sensing, passive optical switches, and programmable metasurface devices, which also broaden the landscape of subwavelength nanostructures for biosensors and optical communications.

Funder

Hunan Province Key Laboratory for Ultrafast Micro/Nano Technology and Advanced Laser Manufacture

Foundation of Hunan Educational Committee

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Science Challenge Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3