Metalens-based stereoscopic microscope

Author:

Long Yong1,Zhang Jianchao1,Liu Zhihao1,Feng Weibin1,Guo Songming1,Sun Qian1,Wu Qinfei1,Yu Xiangyang1ORCID,Zhou Jianying12,Martins Emiliano R.3,Liang Haowen12ORCID,Li Juntao1

Affiliation:

1. Sun Yat-sen University

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)

3. University of São Paulo

Abstract

Stereoscopic microscopy is a promising technology to obtain three-dimensional microscopic images. Such microscopes are based on the parallax effect, and as such require two lenses to focus at two different points. Geometrical constraints, however, restrict their numerical apertures to about 0.2, thus limiting the system’s resolution. Higher numerical apertures ( 0.35 ) can be achieved with designs using only one bulk lens, but such systems are 10 times more costly than the conventional ones. Thus, there is a pressing need for alternative solutions to improve the resolution of stereoscopic systems. Here, we show that high-resolution and low-cost stereoscopic systems can be obtained using birefringent single-layer metalenses. We design and fabricate a birefringent metalens operating at 532 nm with a numerical aperture as high as 0.4. The metalens is then used to demonstrate high-resolution stereoscopic imaging of biological samples. The microscopic images are further displayed and perceived vividly in an autostereoscopic display. Our demonstration paves the way to a new strategy to achieve high-resolution and low-cost stereoscopic microscopes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Innovation Group Project of Southern Marine Science and Engineering

São Paulo Research Foundation FAPESP

CNPq

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3