Innovative OPA-based optical chip for enhanced digital holography

Author:

Wang ZihaoORCID,Liu Linke,Jiang Ping1,Liao Jiali2,Xu Jiamu,Sun YanlnigORCID,Jin Li1,Lu ZhenzhongORCID,Feng Junbo1,Cao Changqing

Affiliation:

1. United Microelectronics Center (CUMEC)

2. Science and Technology on Electromechanical Dynamic Control Laboratory

Abstract

Digital holographic imaging has emerged as a transformative technology with significant implications for AR/VR devices. However, existing techniques often suffer from limitations such as restricted field of view (FOV), high power consumption, and contrast distortion. This paper introduces an innovative optical phased array (OPA)-based chip, integrating polarization, amplitude, and phase multiplexing for enhanced complex amplitude holographic imaging. A checkerboard-style staggered array is employed in the control strategy, substantially reducing power consumption and enabling the potential for large-scale array integration. To further enhance imaging quality, we introduce what we believe are two novel calibration strategies: one is to achieve super-resolution through block imaging methods, and the other is to image using sparse aperture methods. These advancements not only provide a robust foundation for high-quality holographic imaging, but also present a new paradigm for overcoming the inherent limitations of current active holographic imaging devices. Due to challenges in chip fabrication, the research is primarily simulation-based. Nevertheless, this work presents meaningful advancements in digital holographic imaging for AR/VR applications and provides a foundation for future experimental validations.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shaanxi Province

Science and Technology on Electromechanical Dynamic Control Laboratory

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3