Abstract
We report a tunable all-fiber laser emitting a maximum output power of 2.55 W around 3240 nm. The fiber laser cavity based on a fluoride fiber doped with dysprosium ions yields an efficiency of 42% according to the in-band launched pump power at 2825 nm. Due to a custom piezoelectric fiber Bragg grating (FBG) package, mechanical strains applied to the narrowband FBG used as the input cavity coupler allowed for fast tuning of the emission wavelength over a spectral range of 1.5 nm. This laser was deployed in the field in northern Québec (Canada) to assess its performances for remote sensing of methane in the presence of a significant amount of water vapor, i.e., over a hydroelectric reservoir. The preliminary results acquired during this field campaign confirm the great potential of the proposed approach for the development of a real-time active imaging system of greenhouse gases.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
Canada First Research Excellence Fund
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献