Axial shift mapping: a self-referencing test for measuring the axial figure of near-cylindrical surfaces

Author:

Wisniewski Hayden J.ORCID,Heilmann Ralf K.1ORCID,Schattenburg Mark L.1ORCID,Chalifoux Brandon D.ORCID

Affiliation:

1. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology

Abstract

Lateral shearing self-referencing interferometry methods shift the surface under test between measurements to separate its topography from that of the reference surface. However, rigid body errors occur during shifting, creating an ambiguity in the quadratic term of the extracted surfaces. We present axial shift mapping, a lateral shearing self-referencing interferometry method for cylinders, in which the quadratic ambiguity is resolved by measuring the rigid body errors using known artifact mirrors residing in the interferometer’s field of view. First, one-dimensional lines of a flat mirror are measured with 2.8 nm RMS difference compared to a three flat test. Then, axial shift mapping is extended to cylindrical surfaces using a computer generated hologram. We find that axial shift mapping results in full surface extraction of cylindrical optics, along the axial direction, with a repeatability of 4.4 nm RMS. We also find that the reference surface extracted through axial shift mapping is within 4.5 nm RMS of the transmitted wavefront error of the computer generated hologram substrate, which was expected to be the largest contribution of reference wavefront error.

Funder

National Aeronautics and Space Administration

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3