Methodology of designing compact schlieren systems using off-axis parabolic mirrors

Author:

Zheng Lingzhi1ORCID,Susa Adam J.1ORCID,Hanson Ronald K.1

Affiliation:

1. Stanford University

Abstract

Schlieren imaging is widely adopted in applications where fluid dynamics features are of interest. However, traditional Z-type schlieren systems utilizing on-axis mirrors generally require large system footprints due to the need to use high f-number mirrors. In this context, off-axis parabolic (OAP) mirrors provide an attractive alternative for permitting the use of smaller f-number optics, but well-documented methodologies for designing schlieren systems with OAP mirrors are lacking. The present work outlines a ray-tracing-based workflow applied to the design of a modified Z-type schlieren system utilizing OAP mirrors. The ray-tracing analysis evaluates the defocus and distortion introduced by schlieren optics. The results are used along with system size and illumination efficiency considerations to inform the selection of optimal optical components capable of producing high-quality schlieren images while minimizing the system footprint. As a step-by-step demonstration of the design methodology, an example schlieren system design is presented. The example schlieren design achieved an image resolution of 1.1 lp/mm at 50% contrast, with a 60% reduction in system length compared to traditional Z-type systems with f/8 mirrors; distortion characterizations of the designed schlieren system showed good agreement with ray-tracing predictions, and the distortion can be corrected through image post-processing. The current work provides a systematic approach for the design of compact schlieren systems with OAP mirrors and demonstrates the utility of this underutilized option.

Funder

National Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3