Parametric hologram optimization for enhanced underwater wireless optical communication

Author:

Nie Jiewen1,Tian Lei1,Zhang Feng1,Li Xiaobo,Yang Haining1ORCID

Affiliation:

1. Southeast University

Abstract

The performance of the underwater optical communication (UWOC) systems was primarily limited by the low optical transmission efficiency due to the beam divergence and water interference. It has been proved in our previous works that holographic beam shaping can effectively increase the optical transmission efficiency and therefore the communication distances and speed. The conventional hologram optimisation method treated each pixel as an independent variable, leading to a large search space and a slow process. In this work, we proposed to use a small set of parameters to describe the beam shaping holograms that were able to limit the beam divergence and compensate for the wavefront distortion. This significantly reduced the number of variables to be optimised and enabled the optimisation to be more efficient and effective. In a proof-of-concept experiment based on the off-the-shelf components, the proposed method was able to generate the optimal hologram within 20 iterations while achieving a tenfold increase in the optical transmission efficiency for a 30 m link at 100 Mbps.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3