Effect of the local energy distribution of x-ray beams generated through inverse Compton scattering in dual-energy imaging applications

Author:

Paternò G.,Cardarelli P.ORCID,Fantoni S.1,Masoumi F.2,Mettivier G.34,Cialdi S.56,Taibi A.7

Affiliation:

1. Alma Mater Studiorum - Università di Bologna

2. Libera Università di Bolzano

3. Università di Napoli

4. INFN - Sezione di Napoli

5. Università di Milano

6. INFN - Sezione di Milano

7. Università di Ferrara

Abstract

X-ray sources based on the inverse Compton interaction between a laser and a relativistic electron beam are emerging as a promising compact alternative to synchrotron for the production of intense monochromatic and tunable radiation. The emission characteristics enable several innovative imaging techniques, including dual-energy K-edge subtraction (KES) imaging. The performance of these techniques is optimal in the case of perfectly monochromatic x-ray beams, and the implementation of KES was proven to be very effective with synchrotron radiation. Nonetheless, the features of inverse Compton scattering (ICS) sources make them good candidates for a more compact implementation of KES techniques. The energy and intensity distribution of the emitted radiation is related to the emission direction, which means different beam qualities in different spatial positions. In fact, as the polar angle increases, the average energy decreases, while the local energy bandwidth increases and the emission intensity decreases. The scope of this work is to describe the impact of the local energy distribution variations on KES imaging performance. By means of analytical simulations, the reconstructed signal, signal-to-noise ratio, and background contamination were evaluated as a function of the position of each detector pixel. The results show that KES imaging is possible with ICS x-ray beams, even if the image quality slightly degrades at the detector borders for a fixed collimation angle and, in general, as the beam divergence increases. Finally, an approach for the optimization of specific imaging tasks is proposed by considering the characteristics of a given source.

Funder

Commissione Scientifica Nazionale 5, Instituto Nazionale di Fisica Nucleare

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3