GPU-accelerated image registration algorithm in ophthalmic optical coherence tomography

Author:

Bian Haiyi1ORCID,Wang Jingtao,Hong Chengjian,Liu Lei1,Ji Rendong1,Cao Suqun1,Abdalla Ahmed N.1,Chen Xinjian1

Affiliation:

1. Huaiyin Institute of Technology

Abstract

Limited to the power of the light source in ophthalmic optical coherence tomography (OCT), the signal-to-noise ratio (SNR) of the reconstructed images is usually lower than OCT used in other fields. As a result, improvement of the SNR is required. The traditional method is averaging several images at the same lateral position. However, the image registration average costs too much time, which limits its real-time imaging application. In response to this problem, graphics processing unit (GPU)-side kernel functions are applied to accelerate the reconstruction of the OCT signals in this paper. The SNR of the images reconstructed from different numbers of A-scans and B-scans were compared. The results demonstrated that: 1) There is no need to realize the axial registration with every A-scan. The number of the A-scans used to realize axial registration is suitable to set as ∼25, when the A-line speed was set as ∼12.5kHz. 2) On the basis of ensuring the quality of the reconstructed images, the GPU can achieve 43× speedup compared with CPU.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China-Liaoning Joint Fund

National Natural Science Foundation of China

the Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3