Seismic detection with distributed acoustic sensors using a convolutional neural network in the frequency wavenumber spectrum

Author:

Arioka Takahiro1ORCID,Nakamura KentaroORCID

Affiliation:

1. Fujitsu Ltd.

Abstract

With the development of optical fiber distributed acoustic sensors (DAS), their application to seismic observation has become popular. We conducted DAS measurements from November 19 to December 2, 2019, using dark fiber of an ocean bottom cable seismic and tsunami observation system off the Sanriku coast in northeastern Japan and investigated seismic detection methods from the obtained strain rate data. We examined a new seismic detection method using a convolutional neural network, to the best of our knowledge, treating a frequency wavenumber spectrum of strain rate as an image. This method effectively captured a characteristic wave described as the T-phase in a sound fixing and ranging channel even with low signal-to-noise ratio data.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3