Neural network spectral relationship to improve an inherent optical properties data processing system for residual error correction

Author:

Chen Jun1,Li Jingfan,He Xianqiang1,Tang Junwu2,Pan Delu1

Affiliation:

1. Second Institute of Oceanography

2. National Laboratory for Marine Science and Technology

Abstract

The residual error was a critical indicator to measure the data quality of ocean color products, which allows a user to decide the valuable envisioned application of these data. To effectively remove the residual errors from satellite remote sensing reflectance (Rrs) using the inherent optical data processing system (IDAS), we expressed the residual error spectrum as an exponential plus linear function, and then we developed neural network models to derive the corresponding spectral slope coefficients from satellite Rrs data. Coupled with the neural network models-based spectral relationship, the IDAS algorithm (IDASnn) was more effective than an invariant spectral relationship-based IDAS algorithm (IDAScw) in reducing the effects of residual errors in Rrs on IOPs retrieval for our synthetic, field, and Chinese Ocean Color and Temperature Scanner (COCTS) data. Particularly, due to the improved spectral relationship of the residual errors, the IDASnn algorithm provided more accurate and smoother spatiotemporal ocean color product than the IDAScw algorithm for the open ocean. Furthermore, we could monitor the data quality with the IDASnn algorithm, suggesting that the residual error was exceptionally large for COCTS images with low effective coverage. The product effective coverage should be rigorously controlled, or the residual error should be accurately corrected before temporal and spatial analysis of the COCTS data. Our results suggest that an accurate spectral relationship of residual errors is critical to determine how well the IDAS algorithm corrects for residual error.

Funder

National Natural Science Foundation of China

Shan’xi Key Research and Development Program

International Cooperation in Science and Technology Innovation among Governments

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3