Abstract
Optical skyrmions, quasiparticles that are characterized by the topologically nontrivial vectorial textures of optical parameters such as the electromagnetic field, Stokes parameters, and spin angular momentum, have aroused great attention recently. New dimensions for optical information processing, transfer, and storage have become possible, and developing multiple schemes for manipulating the topological states of skyrmions, thus, is urgent. Here we propose an approach toward achieving dynamic modulation of skyrmions via changing the field symmetry and adding chirality. We demonstrate that field symmetry governs the skyrmionic transformation between skyrmions and merons, whereas material chirality modulates the twist degree of fields and spins and takes control of the Néel-type–Bloch-type skyrmionic transition. Remarkably, the enantioselective twist of skyrmions and merons results from the longitudinal spin arising from the chirality-induced splitting of the hyperboloid in the momentum space. Our investigation, therefore, acts to enrich the portfolio of optical quasiparticles. The chiral route to topological state transitions will deepen our understanding of light–matter interaction and pave the way for chiral sensing, optical tweezers, and topological phase transitions in quantum matter.
Funder
National Key Research and Development Program of China
Guangdong Major Project of Basic Research
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Science, Technology and Innovation Commission of Shenzhen Municipality
Shenzhen Peacock Plan
Shenzhen University
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献