Dynamic quantitative visualization of transient shear stresses in solids

Author:

Lu Haining,Cao YunORCID,Zhu Hengbo,Lei Shenghong,Kong Xiaoyu,Wang He,Nie Weirong,Xi Zhanwen

Abstract

To aid in shear strength analysis, a technique combined with a time-resolved imaging scheme to achieve direct dynamic quantitative visualization of the distribution and evolution of transient shear stresses in solids through one measurement is studied. By modulating the polarization state of the elliptically polarized light transmitted or reflected from the sample, this method requires only one measurement to achieve visualization. Mathematical models of the correlation between the variation of modulated light field and the shear stresses in the plane perpendicular to the optical axis are established based on the theory of mechanics and photoelasticity. The maximum shear stresses of any section are further derived. As an example, the distribution and evolution of shear stresses induced by an ultrasonic field have been quantitatively visualized by the technique. The visualization results are in fairly good agreement with the finite element simulation results. The simplicity and efficiency of this technique are embodied in the fact that one single measurement can directly obtain the distribution of shear stresses in solids, and the measurements of dynamic shear stresses can be conveniently realized through continuous monitoring.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3