Spatially strongly confined atomic excitation via a two dimensional stimulated Raman adiabatic passage

Author:

Hamedi Hamid R.1ORCID,Žlabys Giedrius1ORCID,Ahufinger Verònica2,Halfmann Thomas3,Mompart Jordi2,Juzeliūnas Gediminas1

Affiliation:

1. Vilnius University

2. Universitat Autònoma de Barcelona

3. Technische Universität Darmstadt

Abstract

We consider a method of sub-wavelength superlocalization and patterning of atomic matter waves via a two dimensional stimulated Raman adiabatic passage (2D STIRAP) process. An atom initially prepared in its ground level interacts with a doughnut-shaped optical vortex pump beam and a traveling wave Stokes laser beam with a constant (top-hat) intensity profile in space. The beams are sent in a counter-intuitive temporal sequence, in which the Stokes pulse precedes the pump pulse. The atoms interacting with both the traveling wave and the vortex beam are transferred to a final state through the 2D STIRAP, while those located at the core of the vortex beam remain in the initial state, creating a super-narrow nanometer scale atomic spot in the spatial distribution of ground state atoms. By numerical simulations we show that the 2D STIRAP approach outperforms the established method of coherent population trapping, yielding much stronger confinement of atomic excitation. Numerical simulations of the Gross-Pitaevskii equation show that using such a method one can create 2D bright and dark solitonic structures in trapped Bose-Einstein condensates (BECs). The method allows one to circumvent the restriction set by the diffraction limit inherent to conventional methods for formation of localized solitons, with a full control over the position and size of nanometer resolution defects.

Funder

European Social Fund

Ministerio de Economía y Competitividad

Generalitat de Catalunya

European Union Regional Development Fund within the ERDF Operational Program of Catalunya

European Cooperation in Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3