Affiliation:
1. China Information Consulting & Designing Institute Co., Ltd.
2. University of Waterloo
3. The University of Texas at Dallas
Abstract
In the context of the rapid deployment of IoT, 5G, and cloud computing, numerous emerging applications demand efficient networked computing capacity for task offloading from mobile and IoT users. This paper focuses on the optimization of network resource allocation and reduction of end-to-end (E2E) latency through the strategic decision of whether and where to offload user requests in a cloud-edge elastic optical network (CE-EON). To address this problem, we first formulate the problem into an integer linear programming (ILP) model as an initial solution. Additionally, we introduce several heuristic approaches that leverage the concept of partial resource offloading, specifically based on proportional segmentation (PRO_PS), partial resource offloading based on average segmentation (PRO_AS), all resource offloading (ARO), and all local processing (ALP). Furthermore, we implement a collaborative cloud-edge (CCE) offloading approach as a baseline for comparison. Our results demonstrate that the PRO_PS approach closely approximates the optimal solutions obtained from the ILP model in static scenarios. Moreover, the PRO_PS approach achieves the lowest E2E latency, blocking probability, and optimized network resource allocation in dynamic scenarios. This highlights the effectiveness of the proposed approach in improving system performance and addressing the challenges of CE-EONs.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Jiangsu Province
Ministry of Science and ICT, South Korea
Jiangsu Engineering Research Center of Novel Optical Fiber Technology, and Communication Network
Suzhou Key Laboratory of Advanced Optical Communication Network Technology
Subject
Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献