Training generative adversarial networks for optical property mapping using synthetic image data

Author:

Osman A.1,Crowley J.1ORCID,Gordon G. S. D1ORCID

Affiliation:

1. The University of Nottingham

Abstract

We demonstrate the training of a generative adversarial network (GAN) for the prediction of optical property maps (scattering and absorption) using spatial frequency domain imaging (SFDI) image data sets that are generated synthetically with a free open-source 3D modelling and rendering software, Blender. The flexibility of Blender is exploited to simulate 5 models with real-life relevance to clinical SFDI of diseased tissue: flat samples containing a single material, flat samples containing 2 materials, flat samples containing 3 materials, flat samples with spheroidal tumours and cylindrical samples with spheroidal tumours. The last case is particularly relevant as it represents wide-field imaging inside a tubular organ e.g. the gastro-intestinal tract. In all 5 scenarios we show the GAN provides an accurate reconstruction of the optical properties from single SFDI images with a mean normalised error ranging from 1.0-1.2% for absorption and 1.1%-1.2% for scattering, resulting in visually improved contrast for tumour spheroid structures. This compares favourably with the ∼10% absorption error and ∼10% scattering error achieved using GANs on experimental SFDI data. Next, we perform a bi-directional cross-validation of our synthetically-trained GAN, retrained with 90% synthetic and 10% experimental data to encourage domain transfer, with a GAN trained fully on experimental data and observe visually accurate results with an error of 6.3%-10.3% for absorption and 6.6%-11.9% for scattering. Our synthetically trained GAN is therefore highly relevant to real experimental samples but provides the significant added benefits of large training datasets, perfect ground-truths and the ability to test realistic imaging geometries, e.g. inside cylinders, for which no conventional single-shot demodulation algorithms exist. In the future, we expect that the application of techniques such as domain adaptation or training on hybrid real-synthetic datasets will create a powerful tool for fast, accurate production of optical property maps for real clinical imaging systems.

Funder

Engineering and Physical Sciences Research Council

UK Research and Innovation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3