Low-loss and broadband cascaded SiN RGB coupler with dual-mode interference

Author:

Hu Xiao-Long1,Jiang Jian-Kun1,Liu Wen-Jie

Affiliation:

1. South China University of Technology

Abstract

We design and demonstrate a cascaded SiN-based RGB coupler with dual-mode interference (DMI) for a micro laser scanning image projector. The DMI configuration in SiN-based waveguides mitigates the adverse effects of self-image point deviation caused by wavelength dispersion, achieving decreased device length and high transmission efficiency. The underlying mechanisms are discussed based on coupled-mode theory and 3D finite difference time domain simulation. A small footprint of 3 µ m × 70 µ m is achieved for the RGB coupler device without input/output circuits, and the insertion losses are less than 0.56 dB at RGB wavelengths. There are two orders of magnitude reduction in device length as compared with the conventional S i O 2 -based RGB coupler, which greatly promotes the miniaturization of the couplers and displays integration advantages with a laser diode and waveguide photodetector. In addition, the 3 dB bandwidth is over 50 nm for the coupler, and it demonstrates good fabrication tolerance. This design can further be integrated into visible light communication systems and applied to visible light integrated photonics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse design of an ultracompact RGB coupler with subwavelength structure;International Conference on Optoelectronic Information and Functional Materials (OIFM 2023);2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3