Mid-infrared dielectric laser acceleration in a silicon dual pillar structure

Author:

Brückner LeonORCID,Chlouba TomášORCID,Morimoto Yuya12ORCID,Schönenberger Norbert,Shibuya Tatsunori3ORCID,Siefke Thomas45,Zeitner Uwe D.56,Hommelhoff Peter

Affiliation:

1. RIKEN Cluster for Pioneering Research (CPR) and RIKEN Center for Advanced Photonics (RAP)

2. The University of Tokyo

3. Research Institute for Measurement and Analytical Instrumentation (RIMA), National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST)

4. Friedrich Schiller University Jena, Institute of Applied Physics

5. Fraunhofer Institute for Applied Optics and Precision Engineering

6. Munich University of Applied Sciences

Abstract

Dielectric laser accelerators use near-infrared laser pulses to accelerate electrons at dielectric structures. Driving these devices with mid-infrared light should result in relaxed requirements on the electron beam, easier fabrication, higher damage threshold, and thus higher acceleration gradients. In this paper, we demonstrate dielectric laser acceleration of electrons driven with 10 μm light in a silicon dual pillar structure. We observe the acceleration of 27 keV electrons by 1.4 keV, corresponding to a 93 MeV/m acceleration gradient. The damage threshold of the structures of 3.3 ± 0.6 GV/m peak field is significantly higher than for near-infrared accelerators. The dual pillar acceleration structure itself even survived 5.2 ± 0.9 GV/m, the highest field strength we could achieve with the current system. This together with the larger structure acceptance bodes well for future dielectric laser accelerators driven with mid-infrared light.

Funder

Gordon and Betty Moore Foundation

European Research Council

Bundesministerium für Bildung und Forschung

Horizon Europe Framework Programme

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coherent Particle Acceleration on a Nanophotonic Chip;2024 37th International Vacuum Nanoelectronics Conference (IVNC);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3