Affiliation:
1. Northwest University
2. National and Local Joint Engineering Research Center for Cultural Heritage Digitization
3. Xi’an University of Technology
Abstract
Cerenkov luminescence tomography (CLT) provides a powerful optical molecular imaging technique for non-invasive detection and visualization of radiopharmaceuticals in living objects. However, the severe photon scattering effect causes ill-posedness of the inverse problem, and the location accuracy and shape recovery of CLT reconstruction results are unsatisfactory for clinical application. Here, to improve the reconstruction spatial location accuracy and shape recovery ability, a non-negative iterative three operator splitting (NNITOS) strategy based on elastic net (EN) regularization was proposed. NNITOS formalizes the CLT reconstruction as a non-convex optimization problem and splits it into three operators, the least square, L1/2-norm regularization, and adaptive grouping manifold learning, then iteratively solved them. After stepwise iterations, the result of NNITOS converged progressively. Meanwhile, to speed up the convergence and ensure the sparsity of the solution, shrinking the region of interest was utilized in this strategy. To verify the effectiveness of the method, numerical simulations and in vivo experiments were performed. The result of these experiments demonstrated that, compared to several methods, NNITOS can achieve superior performance in terms of location accuracy, shape recovery capability, and robustness. We hope this work can accelerate the clinical application of CLT in the future.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Shaanxi Province
Young Talent Support Program of the Shaanxi Association for Science and Technology
Key Research and Development Program of Shaanxi Province
Major research and development project of Qinghai
Young Innovation Team of Shaanxi Provincial Department of Education
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献