Resource-constrained narrowband optoelectronic oscillator-based reservoir computing for classification of modulated signals

Author:

Klimko Benjamin H.1ORCID,Dai Haoying1,Chembo Yanne K.1ORCID

Affiliation:

1. University of Maryland

Abstract

We experimentally investigate the performance of narrowband optoelectronic oscillator (OEO) reservoir computers using the standard 10th-order nonlinear autoregressive-moving-average (NARMA10) task. Because comparing results from differently parameterized photonic time-delay systems can be difficult, we introduce a new, to the best of our knowledge, metric that accounts for system size, computational accuracy, and training effort overhead in order to provide an “at-a-glance” method to holistically determine a reservoir computer’s performance. We then demonstrate the first experimental effort of narrowband OEO-based reservoir computing for the RADIOML dataset, which consists of recognizing and classifying IQ-modulated radio signals including analog and digital modulations. Our results indicate that narrowband OEOs are capable of achieving reasonable accuracies with exceptionally small training sets, thereby paving the way to real-time machine learning for radio frequency signals.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3