Impact of the optical parametric amplification phase on laser pulse compression

Author:

Musgrave J.1,Bromage J.2ORCID

Affiliation:

1. University of Rochester

2. University of Rochester Laser Laboratory for Energetics

Abstract

Optical parametric chirped-pulse amplification (OPCPA) is an effective way to generate ultrashort pulses that has been used extensively for a variety of applications requiring high peak intensities. Precise control and measurement of a system’s spectral and spatial phases are required for Fourier-transform–limited pulse compression and diffraction-limited focusing. Phase accumulated during optical parametric amplification (OPA) can degrade the compressibility and focusability of the pulse, reducing peak intensity. We used analytic and numerical analysis of OPA to study the influence of crystal parameters, the wavefront of the pump and signal, and their relative optical alignment on the accumulated phase. We show that the accumulated signal phase is largely independent of amplifier saturation and, with significant local wavefront gradients in the signal or pump beam, the quality of the compressed pulses can be degraded. We use first-order expressions for the pump- and signal-angle sensitivity to evaluate an OPCPA system consisting of a highly deuterated potassium dihydrogen phosphate amplifier designed to support bandwidth for 15 fs pulses centered at 920 nm.

Funder

National Nuclear Security Administration

University of Rochester

New York State Energy Research and Development Authority

The University of Rochester Laser Laboratory for Energetics

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3