Passive quadrature demodulation of multiplexed interferometric sensors using a CW correlation reflectometer with a single DFB diode laser

Author:

López Jorge H.1ORCID,Shlyagin Mikhail G.1ORCID,Esquivel-Hernández Jonathan,May-Arrioja DanielORCID,Martínez-Manuel RodolfoORCID

Affiliation:

1. Centro de Investigación Científica y de Educación Superior de Ensenada

Abstract

In this Letter, we report a novel, to the best of our knowledge, and simple approach for passive quadrature-phase demodulation of relatively long multiplexed interferometers based on two-channel coherence correlation reflectometry. Two-wavelength channels are generated using a single unmodulated CW-DFB diode laser and an acousto-optic frequency shifter. The introduced frequency shift determines the optical lengths of the interferometers. In our experiments, all interferometers have the same optical length of 32 cm corresponding to the π/2 phase difference between channel signals. An additional fiber delay line was introduced between channels to destroy coherence between initial and frequency-shifted channels. Demultiplexing of channels and sensors was performed using correlation-based signal processing. Amplitudes of cross correlation peaks obtained for both channels were used to extract the interferometric phase for each interferometer. Phase demodulation of relatively long multiplexed interferometers is experimentally demonstrated. Experimental results prove that the proposed technique is suitable for interrogating a serial array of relatively long interferometers dynamically modulated with phase excursions exceeding 2π. Simultaneous interrogation and phase demodulation were experimentally demonstrated using an in-line array of low-finesse Fabry–Perot interferometric sensors

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3