Affiliation:
1. Research Center of Low-Earth-Orbit Satellite Communication and Applications
Abstract
In this paper, we introduce an innovative post-equalization technique leveraging bidirectional reservoir computing (BiRC), and apply it to waveform-to-symbol level equalization for visible light laser communication for the first time. This strategy is more resistant to nonlinearities compared to traditional equalizers like least mean square (LMS) equalizer, while requiring less training time and fewer parameters than neural network (NN) -based equalizers. Through this approach, we successfully conduct a 100-meter transmission of a 32-amplitude phase shift keying (32APSK) signal using a green laser operating at a wavelength of 520 nm. Remarkably, our system achieves a high data rate of 11.2 Gbps, all while maintaining a satisfying bit error rate (BER) below the 7% hard decision forward error correction (HD-FEC) threshold of 3.8E-3.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Office of Global Partnerships
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献