Affiliation:
1. Chinese Academy of Sciences
2. University of Chinese Academy of Sciences
Abstract
The interaction between light and matter has always been the focus of quantum science, and the realization of truly strong coupling between an exciton and the optical cavity is a basis of quantum information systems. As a special semiconductor material, colloidal quantum dots have fascinating optical properties. In this study, the photoluminescence spectra of colloidal quantum dots are measured at different collection angles in microcavities based on hybrid refractive-index waveguides. The photon bound states in the continuum are found in the low–high–low refractive-index hybrid waveguides in the appropriate waveguide width region, where the photoluminescence spectra of colloidal quantum dots split into two or more peaks. The upper polaritons and lower polaritons avoid resonance crossings in the systems. The Rabi splitting energy of 96.0 meV can be obtained. The observed phenomenon of vacuum Rabi splitting at room temperature is attributed to the strong coupling between quantum dots and the bound states in the continuum.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Strategic Priority Research Program (A) of Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献