Improvements of the modulation bandwidth and data rate of green-emitting CsPbBr3 perovskite quantum dots for Gbps visible light communication

Author:

Shan Xinyi,Zhu Shijie,Lin Runze,Li Yanzhe,Wang Zhou,Qian Zeyuan,Cui Xugao,Liu Ran,Tian PengfeiORCID

Abstract

CsPbBr3 perovskite quantum dots (PQDs) as promising color conversion materials have been widely used in display and visible light communication (VLC), but most CsPbBr3 PQDs for VLC are randomly selected without optimization. Thereby the exploration of fundamental experimental parameters of QDs is essential to better employ their performance advantages. Herein, we investigated the concentration and solvent effects on photoluminescence (PL) properties and communication performance of CsPbBr3 PQDs. The PL, time-resolved PL characterization and communication measurements of CsPbBr3 PQDs all exhibit concentration dependence, suggesting that there exists an optimum concentration to take advantages of performance merits. CsPbBr3 PQDs with a concentration of 0.5 mg/ml show the shortest carrier lifetime and achieve the highest −3 dB bandwidth (168.03 MHz) as well as the highest data rate (660 Mbps) comparing to other concentrations. And in terms of the optimal concentration, we further explored the approach to improve the communication performance, investigating the effect of polarity solvent on the communication performance of CsPbBr3 PQDs. Original 0.5 mg/ml CsPbBr3 PQDs (1 ml) with 55 μL ethanol added in obtain a higher −3 dB bandwidth of 363.68 MHz improved by ∼116.4% and a record data rate of 1.25 Gbps improved by ∼89.4% but weaker PL emission due to energy transfer. The energy transfer assisted improvement may open up a promising avenue to improve the communication performance of QDs, but more feasible energy transfer path needs to be explored to ensure the stability of QDs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3