Digital holography without a dark room environment: extraction of interference fringes by using deep learning

Author:

Nagahama Yuki1

Affiliation:

1. Tokyo University of Agriculture and Technology

Abstract

When obtaining digital holograms, dark rooms are used to prevent the influence of natural light on the formation of holograms. Further, in recent years, researchers have actively studied machine learning techniques such as deep learning to resolve image-related problems. In this study, we obtained a pair of holograms influenced by natural light and holograms unaffected by natural light, and trained U-Net to perform image transformation to remove the effects of natural light from holograms. Thus, this study aimed to propose a method for eliminating the effects of natural light from holograms by using the U-Net we trained. To verify the effectiveness of the proposed method, we evaluated the image quality of the reconstructed image of holograms before and after image processing by U-Net. The results showed that the peak signal-to-noise ratio (PSNR) increased by 7.38 [dB] after processing by U-Net. Additionally, the structural similarity index (SSIM) increased by 0.0453 after processing by U-Net. This study confirmed that in digital holography, holograms can be acquired without the use of a dark room and that the method proposed in this study can eliminate the effects of natural light and produce high-quality reconstructed images.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3