Laser-machined thin copper films on silicon as physical unclonable functions

Author:

Killaire GrahamORCID,Walia Jaspreet1ORCID,Variola Fabio1,Weck Arnaud1,Berini Pierre1ORCID

Affiliation:

1. University of Ottawa

Abstract

Physical unclonable functions (PUFs) are receiving significant attention with the rise of cryptography and the drive towards creating unique structures for security applications and anti-counterfeiting. Specifically, nanoparticle based PUFs can produce a high degree of randomness through their size, shape, spatial distribution, chemistry, and optical properties, rendering them very difficult to replicate. However, nanoparticle PUFs typically rely on complex preparation procedures involving chemical synthesis in solution, therefore requiring dispersion, and embedding within a host medium for application. We propose laser machining of surfaces as a one-step process for the creation of complex nanoparticle based PUFs by machining 600 nm thick copper films on a silicon substrate to yield a complex spatial and chemical distribution of redeposited copper, silicon, and oxide species. The approaches and material system investigated have potential applications in silicon chip authentication.

Funder

Ministère de la Défense Nationale

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical unclonable functions on carbon fiber reinforced polymers using laser techniques;Optics Express;2023-11-28

2. Laser Direct Writing based Superhydrophobic Infrared Invisibility surface;2023 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3