Confidentiality-preserving machine learning algorithms for soft-failure detection in optical communication networks

Author:

Silva Moises FelipeORCID,Sgambelluri Andrea1,Pacini Alessandro1,Paolucci Francesco2ORCID,Green Andre,Mascarenas David,Valcarenghi Luca1

Affiliation:

1. Scuola Superore Sant’Anna

2. CNIT

Abstract

Automated fault management is at the forefront of next-generation optical communication networks. The increase in complexity of modern networks has triggered the need for programmable and software-driven architectures to support the operation of agile and self-managed systems. In these scenarios, the European Telecommunications Standards Institute zero-touch network and service management approach is imperative. The need for machine learning algorithms to process the large volume of telemetry data brings safety concerns as distributed cloud-computing solutions become the preferred approach for deploying reliable communication network automation. This paper’s contribution is twofold. First, we propose a simple yet effective method to guarantee the confidentiality of the telemetry data based on feature scrambling. The method allows the operation of third-party computational services without direct access to the full content of the collected data. Additionally, the effectiveness of four unsupervised machine learning algorithms for soft-failure detection is evaluated when applied to the scrambled telemetry data. The methods are based on factor analysis, principal component analysis, nonlinear principal component analysis, and singular value decomposition. Most dimensionality reduction algorithms have the common property that they can maintain similar levels of fault classification performance while hiding the data structure from unauthorized access. Evaluations of the proposed algorithms demonstrate this capability.

Funder

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3