Multiple attention mechanisms-driven component fault location in optical networks with network-wide monitoring data

Author:

Zeng Chuidian1ORCID,Zhang Jiawei1ORCID,Wang Ruikun1ORCID,Zhang Bojun1,Ji Yuefeng1ORCID

Affiliation:

1. Beijing University of Posts and Telecommunications (BUPT)

Abstract

Fault location is an essential part of optical network operation and maintenance, and network operators have expectations to achieve highly accurate and precise fault location for reducing the cost of fault recovery. However, due to the scale of such networks, the volume of monitoring data (MD) is quite large, which poses a great challenge for fault location. An attention mechanism is an effective way to focus on the important information from massive input for the current task, which originates from the study of human vision. Targeting component fault location in optical networks, we propose an attention mechanism-based strategy, which consists of a sequence attention mechanism (SAT), a channel attention mechanism (CAT), a graph attention mechanism (GAT), and a fully connected neural network (FCNN). SAT, CAT, and GAT are applied for link, node, and network representation, respectively, taking corresponding MD as input. The FCNN is responsible for analyzing the correlation between MD and completing the fault location decision. All three attention mechanisms can filter out the more critical MD, assisting the FCNN to make more accurate decisions. We compare the performance of the proposed strategy and artificial neural networks (ANNs) in partial telemetry scenarios. Simulation results indicate that our strategy outperforms ANNs with respect to the accuracy of fault location by focusing on more critical MD and achieves a maximum improvement by 5.6%. Moreover, its feasibility with real data is verified on an experimental testbed consisting of hybrid optical-electrical switching nodes. Extensive results show that our strategy has the potential to achieve highly accurate fault location in real networks.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

BUPT Innovation and Entrepreneurship Support Programs

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Twin of Optical Networks: A Review of Recent Advances and Future Trends;Journal of Lightwave Technology;2024-06-15

2. On Board-Level Failure Localization in Optical Transport Networks Using Graph Neural Network;2024 20th International Conference on the Design of Reliable Communication Networks (DRCN);2024-05-06

3. Digital-twin-assisted meta learning for soft-failure localization in ROADM-based optical networks;Journal of Optical Communications and Networking;2024-03-20

4. Data Entropy-Based Imbalanced Learning;Communications in Computer and Information Science;2024

5. Eavesdropping Detection and Localization in WDM Optical System;2023 IEEE Future Networks World Forum (FNWF);2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3