Quantitative characterization of micro-scanning imaging aliasing and optical parameter optimization

Author:

Zhang Chao,Ren Fafa,Wang Xiaorui,Li Yangyang,Zhao Zhenshun,Li Yue

Abstract

Imaging aliasing is a common problem in the imaging domain. The aliasing of micro-scanning imaging is difficult to characterize accurately, and the matching relationship between the optical system and micro-scanning sampling is unclear. In this paper, a micro-scanning aliasing analysis model is proposed based on the property of sampling squeeze, in which the transfer functions of the optical system, detector, and digital filter are coupled with the micro-scanning sampling process. First, the imaging aliasing under different micro-scanning sampling modes is evaluated based on the constraint relationship of the transfer functions for each part. The stretch factor of the transfer function under micro-scanning sampling is calculated by utilizing the amount of aliasing. Second, the micro-scanning imaging transfer function under different optical parameters is predicted by the stretch factor, and the results indicate the existence of an optimal F-number that maximizes the micro-scanning performance improvement. Furthermore, the optimal micro-scanning imaging F-numbers for different fill factors are given, and the matching relationship between optical parameters, fill factors and micro-scanning mode is analyzed. Finally, a micro-scanning imaging simulation is performed based on the actual imaging transfer and micro-scanning sampling process. The simulation experiment verifies the accuracy of the micro-scanning aliasing model and gives the consistent test results of the optimal F-number. This paper can provide theoretical support for the matching relationship among micro-scanning imaging parameters, which is of great significance for the refined optimal design of micro-scanning imaging systems.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Reference17 articles.

1. Effect of oversampling in pixel arrays

2. Aliasing as noise: a quantitative and qualitative assessment;Park,1993

3. Optimizing microscan for radiometry with cooled IR cameras;Göttfert,2019

4. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning

5. Superresolution performance for undersampled imagers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3