Multi-channel broadband optical chaos generation assisted by phase modulation and CFBG feedback

Author:

Zhang Qiao,Jiang Lin1,Sun Jihui,Pan Yan2,Feng JiachengORCID,Yi Anlin,Pan Wei,Xu Bingjie2,Yan Lianshan1ORCID

Affiliation:

1. Peng Cheng Laboratory

2. Institute of Southwestern Communication

Abstract

In this paper, we propose a novel and simple multi-channel broadband optical chaos generation scheme based on phase modulation and chirped fiber Bragg grating (CFBG). Firstly, phase modulation is introduced to generate more new frequency components to broaden the spectrum of the phase chaos. Meanwhile, the accumulated dispersion from CFBG distorts the intensity chaos, converts phase chaos to intensity chaos, and weakens the laser relaxation oscillation. This process would lead to energy redistribution in the power spectrum, effectively increasing the chaotic bandwidth. Then, the wavelength detuning between CFBG and the semiconductor laser is introduced to enhance the chaotic bandwidth further. The experiment results show that the 10 dB bandwidths of the five channels are up to 31.0 GHz, 34.3 GHz, 36.3 GHz, 40 GHz, and 40 GHz, respectively. Note that the maximum bandwidth of the PD in our experiment is limited to 40 GHz. In addition, the multi-channel chaotic signals obtained from the experiment system are used to generate multi-channel physical random numbers. After the post-processing operations, the total rate of five parallel high-speed physical random number generation channels is 4.64 Tbit/s (160 GSa/s × 5bit × 1 channel + 160 GSa/s × 6bit × 4 channels). As far as we know, this is the highest record of using external cavity feedback semiconductor lasers to generate random numbers, which has great potential to meet the security requirements of next-generation Tbit/s optical communication systems.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Key Technology Research and Development Program of Shandong Province

Sichuan Science Fund for Distinguished Young Scholars

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3