Affiliation:
1. Huzhou Institute of Zhejiang University
Abstract
This work proposed a synthetic aperture rainbow refractometry (SARR) by synthesizing rainbow signals of the same droplet with dual-wavelength laser beams, in order to increase the aperture of rainbow refractometry. In this way, the SARR can apply to long distance and small droplets measurement. An achromatic imaging system, which simultaneously records while separating the two rainbow signals in two channels of a color image, is elaborately designed. A data processing algorithm is developed to retrieve the optimal droplet refractive index and size. Numerical simulations of different droplet sizes from 10
μ
m to 200
μ
m certify the viability of the SARR. Proof-of-concept experiments of micron-sized ethanol droplets are performed with 1650 mm measurement distance. Results show that the SARR can accurately measure droplet refractive index and size with uncertainties of 2.3 × 10−4 and
2
μ
m, respectively. The feasibility and accuracy of the proposed SARR are successfully demonstrated, paving the way for rainbow refractometry applied to large-scale industrial applications.
Funder
National Science and Technology Major Project
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献