Camera spatial arrangement influence on reconstruction accuracy of chemiluminescence tomography

Author:

Wang Jia1,Li Mingzhe12,Guo Zhenyan3,Wu Shenjiang1ORCID,Li Dangjuan1

Affiliation:

1. Xi’an Technological University

2. Qilu Zhongke

3. Nanjing University of Science and Technology

Abstract

Computed tomography of chemiluminescence (CTC) has been demonstrated to be a powerful tool for three-dimensional (3D) combustion visualization and measurement, in which the number of cameras and their spatial arrangement significantly impact the tomographic reconstruction quality. In this work, the relationship of the camera spatial arrangement and tomographic reconstruction accuracy is theoretically established based on two-dimensional (2D) and 3D Mojette transforms and their accurate reconstruction conditions. Numerical simulations and experiments were conducted to demonstrate the theories. The results suggest that the exact reconstruction conditions of the Mojette transforms can be used to determine the minimum number of cameras required for tomography reconstruction, and its achieved reliability can be used as an indicator to predict the reconstruction quality. Besides, the 2D coplanar semicircular configuration exhibits a better performance than that of the 3D non-coplanar arrangement. When the 3D non-coplanar arrangement is adopted, the cameras should be widely distributed in the hemispherical space. The related research provides a theoretical basis for the establishment of the CTC system and other tomography modalities.

Funder

Young Talent Support Program of Shaanxi Province University

Foundation of Equipment Pre-research Area

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3