Affiliation:
1. Southern University of Science and Technology
Abstract
While two-photon fluorescence microscopy is a powerful platform for the study of functional dynamics in living cells and tissues, the bulk motion inherent to these applications causes distortions. We have designed a motion tracking module based on spectral domain optical coherence tomography which compliments a laser scanning two-photon microscope with real-time corrective feedback. The module can be added to fluorescent imaging microscopes using a single dichroic and without additional contrast agents. We demonstrate that the system can track lateral displacements as large as 10 μm at 5 Hz with latency under 14 ms and propose a scheme to extend the system to 3D correction with the addition of a remote focusing module. We also propose several ways to improve the module’s performance by reducing the feedback latency. We anticipate that this design can be adapted to other imaging modalities, enabling the study of samples subject to motion artifacts at higher resolution.
Funder
Division of Biological Infrastructure
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献