Abstract
A specially designed dumbbell type polarization conversion metasurface (PCM) is proposed. The designed PCM achieves line-to-line polarization conversion in ultra-wideband (UWB) from 7.63 GHz to 18.80 GHz. A low-profile metasurface antenna composed of PCM and slot feed is proposed based on characteristic mode analysis (CMA), which realizes the integrated design of radiation and scattering. Because of the checkerboard scattering properties, low-radar cross section (RCS) low-profile multiple-input-multiple-output (MIMO) antenna and array antenna are designed with PCM. The low-RCS high-isolation low-profile MIMO antenna with size of 1.27×1.27×0.07λ03 (λ0: the free-space wavelength corresponding to the center frequency point) operating at 5.8 GHz consists of four orthogonal arranged metasurface antennas. The isolation is greater than 26 dB with impedance bandwidth from 5.51 GHz to 6.06 GHz. In addition, the low-RCS high-gain low-profile array antenna with size of 2.55×2.55×0.07λ03 is also designed. The operating band covers from 5.63 GHz to 6.12 GHz with the gain of 12-15.6 dBi. The RCS reduction of the two antennas for normal incidence is between 6 dB and 23 dB in both X- and Ku-bands. The measured results of the antennas agree with the simulated results, which shows that they have potential application value in 5.8 GHz WLAN wireless communication.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Knowledge Innovation Program of Wuhan-Shuguang Project
Natural Science Foundation of Hubei Province
Ministry of Education Equipment Pre-research Joint Fund
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献