Abstract
We propose a graphene metamaterial consisting of several layers of longitudinally separated graphene nanoribbon array embedded into gain-assisted medium, demonstrating electromagnetically induced transparency-like spectra. Combined with finite-difference time-domain simulations, the transfer matrix method and temporal coupled-mode theory are adopted to quantitatively describe its transmission characteristics. These transmission characteristics can be tuned by altering the gain level in medium layer and the Fermi energy level in graphene. Additionally, it is the incorporation between gain medium and graphene nanoribbons with optimized geometrical parameters and Fermi energy level that the destructive interference between high order graphene plasmonic modes can be obtained, suggesting drastic phase transition with giant group delay and ultra-high group index up to 180 ps and 104, respectively. Our results can achieve efficient slow light effects for better optical buffers and other nonlinear applications.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献