Dual-band terahertz all-silicon metasurface with giant chirality for frequency-undifferentiated near-field imaging

Author:

Li Fuyu1ORCID,Li Yuanxun1,Tang Tingting2,Liao Yulong1,Lu Yongcheng1,Liu Xinyan1,Wen Qiye1ORCID

Affiliation:

1. University of Electronic Science and Technology of China

2. Chengdu University of Information Technology

Abstract

Chiral metasurfaces are widely used in imaging and biosensing due to their powerful light field control capabilities. Most of the work is devoted to achieving the goals of chirality enhancement and tunability, but lacks consideration of design complexity, loss, cost, and multi-band operation. In order to alleviate this situation, we propose a pair of dual-frequency giant chiral structures based on all-silicon, which can achieve excellent and opposite spin-selective transmission around 1.09 THz and 1.65 THz. The giant chirality derives from the in-plane electric and magnetic dipole moments excited in different degrees. Theoretically, the maximum circular dichroism at the two frequencies are both as high as 0.34, and the coverage bandwidths of the two giant chirality are 85.5 GHz and 41.4 GHz, respectively. The experimental results are in good agreement with the simulation results. Based on the dual-band giant chiral patterns, the terahertz near-field imaging of different Chinese character images is demonstrated at two frequencies. The frequency-undifferentiated characteristics, good intensity contrast and three-dimensional imaging information are shown by the results. This work provides new ideas for the design of terahertz devices with simple structure and multi-functions, which are expected to be applied in the field of terahertz imaging or multi-channel communication.

Funder

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Sichuan Science and Technology Major Projects

Jiangxi Innovative Talent Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3