Fused silica ablation by double ultrashort laser pulses with dual wavelength and variable delays

Author:

Gaudfrin K.123,Lopez J.1,Gemini L.2,Delaigue M.4,Hönninger C.4,Kling R.2ORCID,Duchateau G.13

Affiliation:

1. Université de Bordeaux-CNRS-CEA

2. ALPhANOV, Rue François Mitterrand

3. CEA-CESTA, 15 Avenue des Sablières

4. AMPLITUDE, 11 Avenue de Canteranne

Abstract

Today, glass and other similar dielectric materials are widely used in modern manufacturing. However, glass is a brittle and a heat sensitive material. Laser technology is used to process glass but quality and throughput are still a key issue. In the present paper, we investigate dual-wavelength double ultrashort laser pulses in order to control free electrons dynamics and subsequent ablation for fused silica processing, and further improve the understanding of this laser-material interaction. We used a high average power Yb-doped femtosecond laser source (100 W) with two optical lines exhibiting different pulse durations and wavelengths (500 fs at 515 nm; and 1 or 10 ps at 1030 nm) with various fluences and delays. The best configuration in terms of ablation efficiency is expected to take place when the green pulse first induces free electrons, followed by their heating by the red pulse. The obtained results are discussed in terms of optical transmission as well as ablated volume, and are compared with single pulse ablation. Our experimental results are supported by absorbed energy density calculations based on a model considering the two-color laser induced electron dynamics, including photoionization, laser heating of free electrons, and their recombination. We demonstrate that there is an optimal cooperating effect between the two sub-pulses for a 1-ps delay, nevertheless there is no beneficial effect in splitting the beam for optimizing fused silica ablation compared with the single-pulse green configuration.

Funder

French National Association of Research and Technology

French government

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3