Barcode-structured YAG:Ce/YAG:Ce,Mn ceramic phosphors for variable CCT and high CRI LED/LD lighting

Author:

Liu Zitong,Zhang Le12ORCID,Kang Jian13ORCID,Zhou Tianyuan1,Chen Shiwei13,Yang Peng4,Sun Bingheng5,Li Yang6,Chen Hao1

Affiliation:

1. Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology

2. Shandong University

3. Ltd, Xuzhou

4. Xuzhou Fuchang Electronic Technology Co., Ltd

5. Chinese Academy of Sciences

6. Shanghai Institute of Technology

Abstract

Ceramic phosphors are widely considered the next-generation phosphor material for white LED/LD lighting, and a wide spectrum is a key factor in improving the CRI of lighting sources. In this paper, a novel, to our knowledge, barcode-structured YAG:Ce/YAG:Ce,Mn ceramic phosphor was designed and fabricated. The lighting sources with the CRI value of 73.5 and 68.9 were obtained under the excitation of blue LEDs and blue LDs, respectively. Simultaneously, thanks to the effective supplementary emission from a red LD, the CRI of the ceramic-based lighting source reached 81.8 under blue LD excitation. Specifically, the microstructure and luminescent property of ceramic phosphors with different thicknesses and ion doping concentrations were systematically studied. Besides, by changing the blue power from 0.52 W to 2.60 W, the CCT of the laser lighting source with the encapsulation of optimized YAG:Ce/YAG:Ce,Mn ceramic phosphors ranged from 3928 K to 5895 K, while the CRI always maintained above 80. The above results indicate that barcode-structured Ce:YAG/Ce,MnYAG ceramic phosphor is a candidate to achieve a high CRI and ican be applied to various lighting occasions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Key Research and Development Project of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutes of China

Special Project for Technology Innovation of Xuzhou City

Open Project of State Key Laboratory of Advanced Materials and Electronic Components

International S&T Cooperation Program of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3