Highly sensitive temperature and refractive index sensor based on no-core fiber cascaded with a balloon-shaped bent single-mode fiber

Author:

Zhu XiaojunORCID,Song Mengqiang,Liu Xing,Liu Wen,Pan Yongquan,Cao Juan,Zhang Guoan,Yang Yongjie,Shi Yuechun1,Wu Wuming2

Affiliation:

1. Yongjiang Laboratory

2. Weifang University

Abstract

A highly sensitive temperature and refractive index (RI) sensor based on no-core fiber (NCF) cascaded with a balloon-shaped bent single-mode fiber (BSBSF) is proposed and demonstrated. The NCF can excite higher-order modes which will be concentrated and transmitted into the BSBSF due to the characteristic of self-imaging effect. The BSBSF has an excellent temperature performance due to the high thermo-optical coefficient and thermal expansion coefficient of the polymer coating. The NCF and BSBSF are both conducive to the excitation of higher-order modes, which induces the sensitivity of the sensor with an efficiency improvement. The experimental results show that the maximum temperature sensitivity is −3.19nm/C in the range of 22°C–83°C, which is the highest temperature sensitivity in the cascaded BSBSF structure to our best knowledge. In addition, the maximum RI sensitivity is 232.16 nm/RIU when the RI changes from 1.3234 to 1.3512. Compared with other cascaded BSBSF structures, this sensor has a higher temperature sensitivity and can be applicated in the prospects of food, biology, and environmental monitoring.

Funder

Six Talent Peaks Project in Jiangsu Province

Science and Technology Program of Nantong

Postgraduate Research Practice Innovation Program of Jiangsu Province

Key Lab of Modern Optical Technologies of Education Ministry of China

Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3