Abstract
A highly sensitive temperature and refractive index (RI) sensor based on no-core fiber (NCF) cascaded with a balloon-shaped bent single-mode fiber (BSBSF) is proposed and demonstrated. The NCF can excite higher-order modes which will be concentrated and transmitted into the BSBSF due to the characteristic of self-imaging effect. The BSBSF has an excellent temperature performance due to the high thermo-optical coefficient and thermal expansion coefficient of the polymer coating. The NCF and BSBSF are both conducive to the excitation of higher-order modes, which induces the sensitivity of the sensor with an efficiency improvement. The experimental results show that the maximum temperature sensitivity is −3.19nm/∘C in the range of 22°C–83°C, which is the highest temperature sensitivity in the cascaded BSBSF structure to our best knowledge. In addition, the maximum RI sensitivity is 232.16 nm/RIU when the RI changes from 1.3234 to 1.3512. Compared with other cascaded BSBSF structures, this sensor has a higher temperature sensitivity and can be applicated in the prospects of food, biology, and environmental monitoring.
Funder
Six Talent Peaks Project in Jiangsu Province
Science and Technology Program of Nantong
Postgraduate Research Practice Innovation Program of Jiangsu Province
Key Lab of Modern Optical Technologies of Education Ministry of China
Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering