Computational ghost imaging encryption with a pattern compression from 3D to 0D

Author:

Zheng Peixia1,Ye Zhiyuan2ORCID,Xiong Jun2ORCID,Liu Hong-chao1ORCID

Affiliation:

1. Institute of Applied Physics and Materials Engineering, University of Macau

2. Beijing Normal University

Abstract

The principle of computational ghost imaging (GI) offers a potential application in optical encryption. Nevertheless, large numbers of keys composed of random or specific patterns set an obstacle to its application. Here, we propose a series of pattern compression methods based on computational GI, in which thousands of patterns are replaced by a single standard image (i.e., two-dimensional data), a sequence of numbers (i.e., one-dimensional data) or the fractional part of an irrational number (i.e., zero-dimensional data). Different pattern compression methods are tested in both simulations and experiments, and their error tolerances in encryption are further discussed. Our proposed methods can greatly reduce the pattern amount and enhance encryption security, which pushes forward the application of computational GI, especially in optical encryption.

Funder

Multi-Year Research Grant of University of Macau

Science and Technology Development Fund from Macau SAR

National Natural Science Foundation of China

Beijing Normal University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3